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Artificial neural network (ANN) is a learning system based on a computational technique which can

simulate the neurological processing ability of the human brain. It was employed for building of the

quantitative structure–retention relationships (QSRRs) model of antifungal agents—imidazoles or

triazoles by structure. Computed molecular descriptors together with the percentage of acetonitrile

in mobile phase (v/v) and buffer pH, being the most influential HPLC factors, were used as network

inputs, giving the retention factor as model output. The multilayer perceptron network with a 9-5-1

topology was trained by using the back propagation algorithm. Good correlation between experimen-

tally obtained data and ones predicted by using QSRR-ANN on previously unseen data sets indicates

good predictive ability of the model.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The azole antifungal agents in clinical use contain either two
or three nitrogens in the azole ring and are thereby classified as
imidazoles or triazoles. They inhibit ergosterol synthesis, the
main sterol constituent of fungal membranes, by blocking the
cytochrome P450-dependent enzyme lanosterol 14-a-demethy-
lase. Lack of ergosterol and accumulation of 14-a-methylated
precursors result in dysfunction of membrane fluidity and the
activities of several enzymes located in the membrane (e.g. chitin
synthase) [1,2].

Azoles can be analyzed by many different techniques, including
spectrophotometric [3], electrochemical [4], and gas chromatogra-
phical techniques [5]. Reference pharmacopoeial elaborations [6–8]
require for azoles, in most cases, titrimetric method in waterless
environments—acidimetric determination using perchloric acid as
a titrant.

It is important to note that titrimetric and spectrophotometric
methods are suitable for analyzing active pharmaceutical ingre-
dients (API) per se, but are not proper for their determination in
complex matrices such as drug products (DP). In such cases, HPLC
methods are recommended. There are many published RP-HPLC
methods for determination of azoles [9–12] which served as the
starting point for this study in terms of experimental conditions.
ll rights reserved.
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ˇević).
Quantitative structure–retention relationships (QSRRs) repre-
sent a powerful technique for relating the chromatographic reten-
tion parameters of groups of analytes and their descriptors, which
are quantities encoding the structural characteristics [13–15]. The
QSRR approach as a potential tool for optimizing separation of
complex mixtures has been largely proved by accurate prediction of
solute retention for many compound classes. Further, QSRR studies
can significantly contribute to clarify molecular mechanisms of
chromatographic retention [9,16,17].

A molecular descriptor is the final result of a logical and
mathematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule into a
useful number or the result of some standardized experiment.
The choice of descriptors was based on the widely accepted
assumption that retention is governed by intermolecular interac-
tions, as suggested by the fundamental theory of liquid chroma-
tography. In this view, quantum chemical calculations were used
to derive electronic and geometrical properties able to describe
dispersive, polar and hydrogen bonding interactions widely
recognized, together with cavity effect, as driving forces for solute
partition between the chromatographic phases. In addition to the
effect of the solute molecular structure on the retention, that of
the mobile phase composition is investigated by including the
organic modifier concentration as an independent variable of the
QSRR model [15,16].

The QSRR model has been built employing an artificial neural
network (ANN). The ANNs are difficult to describe with a simple
definition. Maybe the closest description would be a comparison



Fig. 1. Chemical structures of the azoles.
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with a black box having multiple inputs and multiple outputs
which operate using a large number of mostly parallel connected
simple arithmetic units. The most important thing to remember
about all ANN methods is that they work best if they are dealing
with non-linear dependence between the inputs and outputs
[18–20]. An important advantage of ANN compared with classical
statistical methods is that it does not require preliminary knowl-
edge of the mathematical form of the relationship between the
variables [21]. ANN has been chosen as it shows better results in
retention prediction than other techniques such as multilinear
regression (MLR) [16,17,22].

To the best of our knowledge, no paper about using QSRR-ANN
as a predictive tool for UHPLC analysis has been published so far.
The study included seven antifungal agents, azoles by structure:
miconazole, econazole, ketoconazole, clotrimazole, itraconazole,
posaconazole and voriconazole (Fig. 1), which are considered to
generate a model. All UHPLC factors which showed a statistically
significant influence on the retention behavior of the investigated
azoles were included in model building. In previously published
papers it can be seen that the percentage of acetonitrile and pH of
the mobile phase have been often included in the QSRR model
[16,17,22]. This was based on the assumption that usually these
factors have the greatest influence on the retention properties of the
investigated substances. But, in this work, all potentially relevant
chromatographic factors were firstly investigated through fractional
factorial design (FFD) and the ones which showed statistically
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significant influence on the retention behavior of azoles were
further included in the QSRR model.

2. Experimental

2.1. Solvents and chemicals

Miconazole, econazole, ketoconazole, clotrimazole, itracona-
zole, posaconazole and voriconazole and fluconazole standards
were obtained from Selectchemie AG (Zürich, Switzerland) and
were used without further purification. HPLC-grade acetonitrile
and HPLC-grade methanol were purchased from Sigma Aldrich
Chemie GmbH, Taufkirchen, Germany. Distilled water, obtained
from a Simplicity 185 purification system, Millipore (Billerica,
MA, USA) was used for preparation of the mobile phase. Ammo-
nium acetate and acetic acid used for preparing buffers were
purchased from Sigma Aldrich. pH of the buffer was adjusted by
addition of acetic acid by means of a PHM210 Standard pH-meter
(Radiometer Analytical SAS, France) equipped with a glass elec-
trode. Triethylamine, added to the mobile phase was purchased
from Fisher Scientific UK Limited, UK. Before use, the mobile
phase was vacuum filtered through 0.45 mm nylon membranes
(Agilent Technologies, Santa Clara, USA).

2.2. Sample preparation

Stock solutions (1 g/L) were prepared by dissolving accurately
weighed 10 mg of each azole in 10 mL of HPLC-grade methanol
and stored at 4 1C. These solutions were used to prepare the
standard working samples by appropriate dilution. In accordance
with the corresponding spectral properties of azoles, stock solu-
tions were diluted with mobile phase to attain the following
sample concentrations: clotrimazole —0.1 mg/mL, ketoconazole
and fluconazole —0.2 mg/mL, while other azoles were analyzed in
concentrations of 0.5 mg/mL.

2.3. Instrumentation

Retention of the azoles was investigated by using Thermo
Scientific Accela UHPLC apparatus (Thermo Fisher Scientific Inc.),
equipped with an autosampler, degasser and photodiode array
detector. The analyses were performed on a Hypersil column
(50 mm length, 4.6 mm i.d., 1.9 mm, Thermo Fisher Scientific Inc.).
Data were recorded and analyzed with the ChromQuest software
version 5.0. The injected sample volume was 5 mL.

2.4. Determination of retention parameters

The UHPLC analyses were carried out under isocratic condi-
tions at column temperatures ranging from 25 to 40 1C with a
flow-rate of 400 mL/min. The retention behavior of the analytes
was investigated as a function of mobile phase composition
ranging from (40: 60, v/v) acetonitrile–ammonium acetate buffer
to (60:40, v/v) acetonitrile acetate buffer (v/v) acetonitrile by
steps of 5%. The absorbance of the analytes during a chromato-
graphic run was collected in the spectral range 210–380 nm. The
detection wavelength was the one providing the maximum peak
height: 240 nm.

2.5. Computation of molecular descriptors

For all examined compounds, dominant forms at different
analytical pH values have been obtained using Marvin Sketch
4.1.13, Chem Axon Ltd. Each structure was subjected to energy
minimization by the semi-empirical MOPAC/AM1 method
of Chem 3Ds Pro, Cambridge Soft Corporation. The minimum
energy structures of the compounds were then used to calculate
all of the molecular descriptors used during the prediction model
construction. The octanol/water distribution coefficient (log D),
polarizability (POL), H-donor sites (H-don) and H-acceptor sites
(H-acc) were calculated by means of Marvin Sketch., whereas the
Connolly solvent accessible area (SAS), molar refractivity (MR),
dipole–dipole energy (DEN), molecular area (MA), solvent-
excluded volume (SEV), van der Waals energy (VDW), non-1,4
van der Waals energy (NON VDW), diameter (D), highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) were generated using Chem 3Ds Pro, Cambridge
Soft Corporation.

Correlations between descriptors were examined by means of a
simple linear regression analysis using Microsoft Office Excel 2007.

2.6. Artificial neural network modeling

ANN topologies or architecture are formed by organizing nodes
into layers and linking these layers of neurons with modifiable
weighted interconnections [23]. Among the different kinds of ANNs,
multi-layer feed-forward networks are most often used in the
structure–property relationship analysis. Commonly, they consist
of three layers: one input layer formed by a number of neurons
equal to the number of descriptors, plus a bias term for intercept,
one output neuron (providing the model response) and a number of
hidden neurons fully connected to both input and output neurons.
Information that propagates from input towards output neurons is
modulated by modifiable weights associated to each connection.
The post-synaptic potential function is the dot product of the
weight vector with the input vector plus a bias value. Weighted
signals entering the operative (hidden or output) neurons are
transformed by an activation function into the neuron output
which, in the case of hidden neurons, is transferred to the next
layer or, in the case of the output neuron, is the final network
response [16]. Network training consists of an iterative progression
of algorithm through a number of epochs. The aim of training is
maximizing the overall agreement between computed and target
outputs for a set of examples (training set). These outputs are
compared in each epoch directing the adjustments of weights.

On the other hand, a network should be applicable on the cases-
ability of generalization. At some moment, generalization ability
progressively deteriorates as a consequence of overfitting. To avoid
this, the predictive power of the network is evaluated after each
weight adjustment on unknown data (validation set). The mini-
mum of the validation error is taken as a suitable criterion to define
the optimal duration of learning for a given network, or to select
among alternative trained networks the one with the expected best
predictive capability. After optimization, the actual predictive
performance of the trained network was evaluated using an
external validation data set, here called test set [16].

In this paper, data of six molecules are used to build the
ANN-based model, while the seventh molecule (econazole) is
preserved to finally evaluate the model quality. Econazole
was selected as a test substance because none of its descriptors
had a limit value compared to the other azoles’ descriptors. The
remainder data points were randomly partitioned to the training
or validation data set, so that the test data set included 125 cases,
while the validation data set included 25 cases.
3. Results and discussion

3.1. Descriptor selection

If one was capable of predicting the retention of analytes
and/or the separation of a mixture on chromatographic systems
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relatively well, then the theoretical approach could, in some part,
replace the time consuming experimental approach. The QSRR
establishes the relations between retention data and molecular
structure. Molecular structure presents an important factor for
the QSRR model and is encoded by descriptors [13,14].

By descriptor selection we encompassed all major groups of
descriptors as physicochemical, quantumchemical, topological
and spatial structural descriptors. In addition, we selected only
Table 1
Correlation coefficients between descriptor pairs.

SAS MA SEV MR DEN NON VDW

SAS 1

MA 0.9993 1

SEV 0.9939 0.9971 1

MR �0.1798 �0.1778 �0.1840 1

DEN �0.6373 �0.6347 �0.6338 0.2875 1

NON VDW 0.2940 0.3215 0.3638 0.1674 �0.2521 1

VDW 0.9931 0.9961 0.9989 �0.1803 �0.6314 �0.2521

D 0.9938 0.9950 0.9918 �0.1580 �0.5765 �0.6314

H-don 0.0358 0.0240 0.0133 �0.0665 �0.2516 �0.5765

H-acc 0.8660 0.8664 0.8663 �0.2367 �0.4517 �0.2516

LUMO 0.9912 0.9930 0.9946 �0.2104 �0.6620 �0.4517

HOMO 0.9912 0.9930 0.9946 �0.2104 �0.6620 �0.6620

POL 0.9980 0.9986 0.9982 �0.1471 �0.6962 0.1764

Log D 0.7273 0.7331 �0.7312 0.7820 �0.4634 0.6855

Table 2
Experimental plan of FFD and related retention factors.

Experiment no. Variables Retention factors

Aa Bb Cc Dd Miconazole Econazole Ke

1 �1 �1 �1 �1 13.15 7.98 1.8

2 1 �1 �1 1 2.46 1.63 0.5

3 1 1 �1 �1 7.58 3.55 0.7

4 1 �1 1 �1 2.47 1.19 0.2

5 �1 �1 1 1 10.03 6.01 1.8

6 1 1 1 1 3.46 2.51 0.6

7 �1 1 �1 1 83.14 36.98 6.5

8 �1 1 1 �1 46.21 22.45 5.6

a A: Percentage of acetonitrile in mobile phase: 40% (�1), and 60% (1).
b B: pH of water phase: 3.5 (�1), and 6 (1).
c C: Column temperature: 20 (�1), and 50 (1).
d D: Percentage of TEA in water phase: 0.01% (�1), and 0.1% (1).

Fig. 2. Absolute values of standardized effects of i
those which are not highly correlated to each other. Descriptors
with correlation coefficients higher than 0.990 were not all
considered in the ANN analysis. The correlation analysis was
carried out to evaluate whether similar chemical information was
encoded by two or more descriptors, and, in such cases, to
eliminate redundant descriptors. Each of the correlated descrip-
tors was tested for correlation with retention time using the non-
linear neural networks model. A couple of them, including MA,
VDW D H-don H-acc LUMO HOMO POL Log D

1

0.9886 1

0.0289 0.0074 1

0.8466 0.8892 �0.0921 1

0.9904 0.9876 0.0344 0.9004 1

0.9904 0.9876 0.0344 0.9004 1 1

0.9983 0.9907 0.0378 0.8295 0.9879 0.9879 1

0.7425 0.7021 �0.5385 0.3683 0.6727 0.6727 0.7435 1

toconazole Clotrimazole Itraconazole Posaconazole Voriconazole

7 6.01 42.64 11.1 2.26

3 1.93 3.28 1.26 0.76

8 2.6 2.39 0.8 0.41

7 1.21 2.55 0.68 0.3

1 5.68 31.35 9.45 1.85

9 1.78 2.04 0.77 0.37

8 20.62 38.55 9.58 1.72

13 31.72 9.08 1.51

nvestigated factors on retention of the azoles.



Table 3
Results of ANN computing and prediction.

Drug k(exp) Data set k(ANN) Error

Miconazole 2.59 Training 2.382273 �0.207727

3.46 Training 2.947798 �0.5122

4.95 Training 3.717235 �1.232765

7.66 Training 5.472949 �2.187051

13.39 Training 12.03887 �1.351132

5.3 Training 4.711562 �0.5884

6.77 Training 6.323794 �0.4462

9.62 Training 8.66004 �0.96

14.97 Training 13.53277 �1.437227

25.72 Training 28.03258 2.312584

7.1 Training 6.832136 �0.2679

10.45 Training 10.31613 �0.1339

16.6 Training 16.35945 �0.2406

27.16 Training 28.53076 1.370756

49.88 Training 53.08393 3.203934

7.95 Training 7.379806 �0.5702

12.71 Validation 12.02064 �0.6894

21.79 Training 21.72204 �0.06796

39.63 Training 42.28254 2.652543

78.79 Training 71.11135 �7.678654

7.85 Training 6.78699 �1.06301

12.55 Training 11.2514 �1.298599

21.64 Training 22.02801 0.3880146

41.8 Training 47.65346 5.853464

89.61 Training 77.8926 �11.7174

Ketoconazole 0.59 Training 0.6986098 0.1086098

0.68 Training 0.679534 �0.000466

0.87 Training 0.6827213 �0.1873

1.24 Training 0.7421062 �0.4979

2 Training 1.115711 �0.8843

0.9 Training 1.256159 0.356159

1.09 Validation 1.175481 0.08548

1.44 Training 1.141235 �0.2988

2.03 Training 1.259509 �0.7705

3.22 Training 2.027457 �1.192543

1.09 Training 1.741918 0.6519177

1.48 Training 1.75488 0.2748804

2.14 Training 1.864517 �0.2755

3.28 Training 2.396478 �0.8835

5.46 Training 4.971727 �0.4883

1.22 Training 2.002441 0.7824407

1.69 Training 2.138994 0.4489937

2.57 Training 2.4701 �0.0999

4.17 Training 3.632829 �0.5372

7.93 Validation 8.944775 1.014775

1.16 Training 2.08659 0.9265902

1.7 Training 2.300524 0.6005236

2.58 Training 2.802796 0.2227958

4.47 Training 4.546414 0.0764141

8.74 Training 12.52243 3.782433

Posaconazole 1.37 Training 2.806591 1.436591

1.97 Training 2.994487 1.024487

3.15 Validation 3.334811 0.1848111

5.67 Training 4.366538 �1.303462

11.72 Training 8.522966 �3.197034

1.37 Training 2.841467 1.471467

2.03 Training 3.158004 1.128004

3.35 Training 3.748208 0.3982078

6.17 Validation 5.449124 �0.7209

13.49 Validation 12.25344 �1.236564

1.36 Training 2.659567 1.299567

2.07 Training 2.983784 0.9137843

3.41 Training 3.625022 0.2150224

6.22 Training 5.558752 �0.6612

13.29 Training 13.52565 0.2356532

1.35 Training 2.433038 1.083038

2.06 Training 2.730347 0.6703472

3.39 Validation 3.352218 �0.03778

6.15 Validation 5.320174 �0.8298

13.49 Training 13.67918 0.1891798

1.27 Training 2.224438 0.9544384

1.95 Training 2.486208 0.5362079

3.17 Training 3.065953 �0.104

5.84 Validation 4.991913 �0.8481

12.41 Training 13.40352 0.993517

J. Golubović et al. / Talanta 100 (2012) 329–337 333



Table 3 (continued )

Drug k(exp) Data set k(ANN) Error

Itraconazole 3.38 Training 6.729067 3.349067

5.62 Training 7.659227 2.039227

10.26 Training 10.06522 �0.1948

19.99 Training 18.575 �1.415004

45.3 Training 45.28886 �0.01114

3.58 Validation 4.988301 1.408301

5.9 Training 6.161907 0.2619072

10.7 Training 9.457813 �1.242187

21.72 Training 22.00376 0.2837569

53.4 Validation 54.39898 0.9989835

3.57 Training 4.600903 1.030903

6.04 Training 5.775403 �0.2646

11.04 Training 9.186252 �1.853748

22.66 Validation 22.40395 �0.256054

53.34 Training 54.75841 1.418413

3.56 Training 4.095365 0.5353654

6 Training 5.185054 �0.8149

10.96 Training 8.467299 �2.492701

22.22 Validation 21.50434 �0.7157

55 Training 53.0129 �1.987097

3.39 Validation 3.611526 0.2215259

5.73 Validation 4.598149 �1.131851

10.32 Training 7.692992 �2.627008

20.9 Training 20.32327 �0.5767

49 Training 50.75271 1.752708

Voriconazole 0.74 Training 0.6028858 �0.1371

1.82 Training 0.6131097 �1.20689

1.17 Training 0.6387763 �0.5312

1.61 Training 0.70984 �0.90016

2.34 Training 0.9812719 �1.358728

0.74 Training 0.608318 �0.131682

0.92 Training 0.6137527 �10.3062

1.19 Training 0.6296436 �0.5604

1.64 Training 0.6782669 �0.9617

2.38 Training 0.89013 �1.48987

0.71 Training 0.6344958 �0.0755

0.89 Validation 0.6336279 �0.2564

1.17 Validation 0.6450088 �0.525

1.6 Training 0.6891859 �0.9108

2.39 Training 0.8977122 �1.492288

0.71 Validation 0.730115 0.02011

0.9 Validation 0.7119707 �0.188

1.18 Training 0.7169894 �0.463

1.58 Training 0.7756998 �0.8043

2.33 Validation 1.081624 �1.248376

0.7 Training 0.9483476 0.2483476

0.88 Training 0.9170993 0.0370993

1.16 Validation 0.925953 �0.234047

1.61 Training 1.050502 �0.5595

2.33 Training 1.712228 �0.6178

Clotrimazole 2.06 Training 2.224767 0.1647669

2.46 Training 2.33927 �0.1207

3.19 Training 2.709153 �0.4808

4.27 Training 3.667659 �0.602341

6.27 Training 6.670405 0.400405

3.07 Validation 3.734375 0.6643752

4.11 Training 4.202328 0.09233

5.93 Validation 5.176426 �0.7536

8.89 Training 7.558226 �1.331774

14.44 Training 15.05328 0.6132789

3.39 Validation 4.431577 1.041577

4.97 Validation 5.244337 0.2743371

7.68 Training 6.821554 �0.8584

12.48 Training 10.70337 �1.776629

21.98 Training 23.14052 1.160524

3.48 Training 4.473569 0.9935691

5.12 Training 5.394808 0.2748083

8.11 Training 7.166964 �0.943

13.56 Training 11.67098 �1.889018

25.9 Training 26.80276 0.9027582

3.31 Training 4.259353 0.9493532

4.95 Training 5.14774 0.1977395

7.82 Training 6.86185 �0.95815

13.26 Training 11.38475 �1.875253

25.77 Training 27.46242 1.692417

Econazole 1.78 Test 1.296065 �0.4839

J. Golubović et al. / Talanta 100 (2012) 329–337334



Table 3 (continued )

Drug k(exp) Data set k(ANN) Error

2.26 Test 1.552738 �0.7073

3.16 Test 2.011345 �1.148655

4.85 Test 3.010152 �1.839848

8.34 Test 6.474477 �1.865523

3.1 Test 2.331403 �0.7686

4.08 Test 2.868004 �1.211996

5.74 Test 3.893769 �1.846231

8.57 Test 6.283902 �2.286098

14.52 Test 14.27614 �0.2439

4.29 Test 3.512783 �0.7772

6.29 Test 4.635233 �1.654767

9.62 Test 6.934774 �2.685226

14.07 Test 12.66218 �1.407821

26.99 Test 29.99099 3.000985

4.8 Test 4.149337 �0.6507

7.48 Test 5.754592 �1.725408

12.48 Test 9.374161 �3.105839

21.51 Test 19.42613 �2.08387

41.45 Test 47.14899 5.698985

4.72 Test 4.182316 �0.5377

7.42 Test 5.8611 �1.5589

12.46 Test 9.917749 �2.542251

22.76 Test 22.47101 �0.289

46.69 Test 56.30841 9.618409

Fig. 3. Graphical presentation of the applied neural network.
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showed slightly better results. MA was chosen for further model-
ing because of it had the highest correlation compared with other
correlated descriptors.

Correlation coefficients between descriptor pairs are listed in
Table 1. According to this, descriptors which were used in further
ANN modeling were Log D, MA, MR, DEN, NON VDW, H-don and
H-acc.

3.2. Fractional factorial design in selection of statistically significant

chromatographic factors

Screening experiments are intended to reveal which factors
have the biggest influence on the retention behavior of the
analyzed substances in the chromatographic system. In this
way, all important factors were included but the number of
inputs was also reduced and unnecessary network burdening
was prevented. For that purpose, 24-1 fractional factorial design
(FFD) was applied. The statistical significance of the investigated
factors was estimated towards retention factors (k) of azoles as
the model output. Percentage of organic eluent in mobile phase,
pH of water phase, column temperature and percentage of
triethylamine (TEA) as a modifier for basic drug elution in the
water phase appeared to potentially affect retention of drugs
generally. These assumptions were confirmed in preliminary
experiments. On the other hand, the flow rate showed low
influence on the retention factors, so it was kept constant at
400 mL/min and was not included in FFD. The factors were varied
on two-point levels denoted as þ1 and �1, thereby using the



Fig. 4. Agreement between experimentally obtained retention factor values

(log k(exp)) and values calculated or predicted by ANN (log k(ANN)).
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values obtained as suitable in preliminary experiments. The
repetition of three experiments at the central point provided a
precise estimate of the experimental error and the significance of
each variable. The experimental plan of FFD and related retention
factors are given in Table 2. The effect of each variable was then
tested using Students’ t-test with a corresponding p-value.
According to the obtained retention factors, the estimated effects
and then the standardized effects were calculated. The next step
was to estimate the importance of the factors. The critical t-value,
for a¼0.05 and 3 degrees of freedom (d.f.), was 3.182 for all
substances. All factors whose absolute values of the standardized
effects are above the critical t-value are statistically significant
and the ones below this value are statistically insignificant. Pareto
charts, in which the length of the bars is proportional to the
absolute value of the standardized effects, are presented in Fig. 2.
The dashed line represents the critical t-value (p¼0.05) and the
importance of the presented factors can be easily noticed. As
shown, the percentage of acetonitrile in mobile phase and buffer
pH showed statistically significant influence on retention of the
azoles, and therefore they were selected as inputs in ANN
modeling. Further, it was decided to set column temperature at
20 1C and TEA was added to the mobile phase in a percentage of
0.01 (v/v).

3.3. ANN modeling

Results of ANN computing and prediction are given in Table 3.
Percentage of acetonitrile in mobile phase (v/v) was varied from
40% to 65% in steps of 5% (v/v). Buffer pH was varied from 3.5 to 6
in steps of 0.6 or 0.7.

Network architecture and parameters of function were opti-
mized by trial and error to minimize the root mean square (RMSE)
for the training and validation data sets. At the start of a training
run, the weights and biases were initialized at random values in
the range between þ1 and �1. The best performance showed a
multilayer perceptron network consisting of three layers: input,
hidden and output layer, with five neurons in the hidden layer. Its
graphical presentation is given in Fig. 3. Linear post synaptic
potential function operated in both the hidden layer and output
neuron. Logistic activation function was set both in hidden and
output layers. Learning rate governs the step size as the algorithm
alters weights, while the momentum rate helps the algorithm
avoid becoming stuck in flat spots and local minima. Optimal
results were given by the network trained with back propagation
algorithm with learning rate set to 0.6, momentum set to 0.1,
while training was carried out for 10,000 epochs. Continued
increase in validation error was the criterion for stopping the
training. RMSE for training, validation and test were 1.789, 0.7498
and 2.777, respectively. R2 represents the coefficient of determi-
nation between experimentally obtained retention factor values
(k(exp)) and values computed by ANN for training, or predicted
by ANN for validation and test data sets (k(ANN)). R2 is 0.9861,
0.9957 and 0.9871 for training, validation and test data sets
respectively. High R2 and low RMSE values for training and
validation sets indicate good descriptive ability. On the other
hand, high R2 and low RMSE values for the test set indicate good
predictive ability and that no overfitting occurred during the
training process.

Agreement between log k(exp) and log k(ANN) is presented in
Fig. 4. Logarithmic transformation of responses is likely to be more
suitable for plotting because of a broad range of k values. As shown
in Table 3 concerning the test data set, as a data set previously
unseen in the network, there is a high level of agreement between
observed and predicted values in the range of k values, where the
test substance, econazole, has a desirable retention (k¼1–10) and
slightly lower (0–1) and higher k values (10–30). On the contrary,
ANN is no longer reliable under conditions which make econazole
retain longer in the stationary phase. This failure in prediction at
higher k values makes test RMSE higher than it would be if dealing
with desirable and slightly higher k values. This represents no
hindrance, because the main application of this predictive tool is
optimization of the HPLC analytical method for a future imidazole-
or triazole-derivative antifungal agent, which implies desirable
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retention behavior. A broader range of k values with satisfactory
prediction (0–30) gives additional robustness to the QSRR-ANN.

For comparison, the possibility of obtaining a linear QSRR
model by means of multilinear regression (MLR) was assessed.
MLR requires only two data sets: a training set for the construc-
tion of the model and a second data set to check the predictive
performance. With the purpose of using all the available data, the
MLR model was built by fitting the data used for network
training–validation (150 data points), thereby leaving the test
data set for eventual predictability assessment. Stepwise multiple
linear regression method produced poor linear correlation
between descriptors and k(exp) with R2

¼0.5647 and F¼20.18.
Model predictability on the test data set is therefore very poor,
with R2

¼0.6918, which strongly refers to ANN as a method that
deals optimally with non-linear dependence between the inputs
and outputs.
4. Conclusion

In this paper, molecular descriptors together with organic
modifier content and pH of water phase, have been combined in
the same QSRR model to predict the UHPLC retention of imida-
zole- and triazole-derivative antifungal agents. Despite large
differences in terms of structures of six antifungal agents:
miconazole, clotrimazole, ketoconazole, itraconazole, posacona-
zole and voriconazole, the optimized ANN network showed good
predictability on previously unseen data, corresponding to eco-
nazole. This also proved a good selection of representing descrip-
tors in terms of their influence on retention behavior of model
substances. In this way, QSRR modeling combined with ANN
could be used for prediction of HPLC behavior of a new antifungal
agent with imidazole or triazole structure and molecular descrip-
tor values within values used for ANN optimizing.
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